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Summary. A method is presented for comput ing  esti- 
mates of  genetic parameters  under  l inear inequal i ty  
constraints such that  solutions are within theoret ical  
limits. The method produces b iased  estimators,  yet a 
small scale numerical  study, also presented,  shows that  
the inequal i ty  constrained est imators have a small  
mean squared error of  predic t ion  than the best  of  
unbiased estimators. The increase in efficiency of  
est imation is par t icular ly  useful for traits where  heri t-  
abil i ty is near the boundary  values of  zero or  one. 
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Introduction 

One o f  the principal  aims o f  animal  breeding is the 
identification of  sources of  variat ion.  Associated with 
this goal is the character izat ion of  the direct ion and 
magnitude or relat ionships between traits. To this end, 
the estimation of  components  o f  variance and co- 
variance is a topic which t radi t ional ly  interests an imal  
geneticists. 

Although, by definition, variance components are non- 
negative parameters, estimates of heritability have been 
reported below the theoretical limit of zero, as well as above 
the theoretical limit of one (1.0) (Allaire and Lin 1980; Jungst 
et al 1981). Similarly, estimates of genetic correlations have 
been reported outside the parameter space of [-1.0, 1.0] 
(Thrift et al. 1981). The objective of this paper is to present 
computing strategies which insure estimates within the 
defined theoretical boundaries. 

The necessary and sufficient conditions for the existence 
of non-negative quadratic unbiased estimators of linear func- 
tions of variance components were examined by LaMotte 
(1973), who found that for the general mixed linear model, the 
only variance component which can be so estimated is ~ (the 
residual error variance). Hence, for quadratic estimates of 
variance components, unbiasedness and non-negativity are 

incompatible optimality criteria. An extension of LaMotte's 
(1973) Lemma 3 illustrates a similar incompatibility between 
unbiasedness and constrained estimates of heritability below 
1.0. 

Suggested strategies, which could be adopted when nega- 
tive heritability estimates arise, have been put forward by 
Searle (1971, section 9.8b), who, in so doing, noted that none 
are wholly satisfactory. Another possibility is to choose a 
method which guarantees positive estimates of variance com- 
ponents, for example Henderson's (1973) algorithm for maxi- 
mum likelihood estimators. However, none of these suggested 
strategies are applicable to estimates of heritability which are 
greater than one (1.0). 

Computat ional  al ternatives which are conceptual ly  
straightforward and which add little addi t ional  com- 
puting effort will be presented. The method  permits  
l inear inequali ty constraints on the solutions for vari-  
ance and covariance components  such that  pa r ame te r  
estimates fall within the prescr ibed by  quant i ta t ive  
genetic theory. 

Statistical preliminaries 

The general mixed l inear  model  assumed th roughout  
this paper  is 

y =  X b +  Zj Ul + Z 2 u 2 +  .. .  + ZkUk (1) 

where y is a vector of  N observations,  X of  o rder  N • p 
and Z of  order  N x c i  ( i - I  . . . . .  k) are known in- 
cidence matrices, b is an unknown vector of  p f ixed 
effects and the ui of  order  ci are nonobservable  vectors 
of  random effects (customarily,  uk = e, a vector o f  error 
effects and Zk = I of  order  N) such that  

(i) E [ u i ] = 0 ,  i = l  . . . . .  k 
(ii) the elements o f  ui are independent  with common  

variance O'i 2, and 
(iii) ui and uj are independent  for i :I: j. 
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Accordingly y has mean vector 

E [y] = X b (2) 

and variance-covariance matrix 

k 

Var [y] = ~ Zi Z~ ai z = V. (3) 
l=1 

Methods for estimating the variance components, 
a 2, typically involve the construction and solution of  a 
set of  linear equations of  the form 

A a = g (4) 

where the coefficient matrix A and the vector g are 
known and a is a vector of  the k unknown variance 
components. For most methods of  estimation g is a 
vector of  k quadratic forms and, for unbiased estima- 
tors, E [g] = A a. Estimation of  genetic parameters with 
known upper and lower bounds suggests that a solu- 
tion, a, to (4) be stated as 

minimize II A a - g [I subject to F a >= h (5) 

for F a known m x k matrix and h a known vector of  
order m. The elements of  F and h are determined by 
the desired inequality constraints. 

The characterize the algorithm by which (5) is 
solved it is convenient to define 

( a ) = l ] A a - g [ ]  

S = {a IF a _-> h}. (6) 

The basic iterative algorithm is 

Step l: 
Step 2: 

Step 3: 
Step 4: 

Find a e S (if you can't, stop), 
Find w such that a + w ~ S  and ~ b ( a + w )  
< q5 (a) (if you can't, stop), 
Set new solution for a to a + w, 
Go to step 2. 

The vector w (or the negative of  this vector) is 
sometimes called the dual vector for problem (5). 
Complete characterization of  the solution of  (5) is 
provided by the Kuhn-Tucker Theorem (Fiacco and 
McCormick 1968, p. 20 and p. 90). In addition, the 
numerical stability of  the solution as well as the con- 
vergence properties of  the algorithm are developed by 
Stoer (1971). The discussion of  these properties, 
though important to numerical analysts concerned with 
the general application of  these techniques, is not 
appropriate here because the particular form of  in- 
equality constraints imposed in the stimation of  herit- 
ability (i.e., that the constraints are continuously 
differentiable functions of  the variance components) do 
guarantee a unique solution to (5). This is true provid- 
ed A is of  full column rank which, for variance 
component estimation, it is. For  the case where F a is 

much greater than h (i.e., F a >> h) the inequality con- 
strained least squares solutions are identical to the 
solutions of ordinary least squares. Conversely, for the 
case where F a approach h the inequality constrained 
estimators behave as if they were linear equality 
constraints (Liew 1972). 

Inequality constrained es t imators  

Having established that solving (4) subject to a set of  
linear inequality constraints is a plausible method of  
obtaining estimates of  genetic parameters within 
theoretical limits, a small example is presented to 
illustrate the application of  the algorithm to the esti- 
mation of  heritability. Of interest is the determination 
of  the elements of  F and h of  (5). The example, though 
unrealistically small, considers the problem of  negative 
estimates of  heritability as well as estimates which 
exceed one (1.0). 

Consider Table 1 where six progeny records are 
classified by sire and dam. An appropriate linear 
model might be the two-way crossed classification 
(without interaction) with algebraic representation 

Yijk = ,tt + di + sj + eijk, (7) 

where Yijk is the k-th progeny record of  the j-th sire 
mated to the i-th dam,/z  is an unknown constant, di  is 
the random effect of  the i-th dam with E [d i ]  = 0 and 
V [di]  = o "2, Sj is the random effect of  the j-th sire with 
E [sj] = 0 and V [sj] = a~, and eijk is a random residual 
effect with E [eijk] = 0 and V [eijk] = O "2. Dam, sire and 
residual effects are mutually uncorrelated. Under this 
model it is possible to compute two estimates o f  
narrow sense heritability, 

4a  2 
ht~= + + 

and 
h~ 4a2 

+ + 

Method 1 estimates of  the variance components (Hen- 
derson 1953) can be computed from the following 

Table 1. Example data set 

Sires 

1 2 

10 7 1 12 6 
Dams 

8 2 
9 
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linear equations 

16 4 66][6g ] 
1/6 4 16 / / 

- 4 - 4 18 L 6 ~ ]  

e ( d l p )  
= R(s]p)  

T - R (/z, d) - R (/z, s) + R (/z) 

[ .0833- 
= 14.0833 

9.1667 
(8) 

where the R() -no ta t ion  is the reduction in sums of  
squares for fitting various submodels of  (7) (Searle 
1971) and T is the total sum of squares. Solving (8) in 
the usual manner yields estimates 

b 2 = -  2.4338 

6 ~ =  4.5662 

62 = 3.5294. 

Clearly both estimates of  heritability are outside the 
theoretical range. Estimation of  these variance com- 
ponents under inequality constraints (after (5)) such 
that heritability estimates are within the interval (0, 1) 
implies the following linear inequality constraints 

0 1 1621 > (9) 
- 3 1 k6~J 

1 - 3  

Solving (8) subject to these constraints under the 
algorithm presented in the previous section yields 
estimates of  the variance components as 

65 = o.oooo 
62 = 1.3609 

62 = 4.0827 

with dual vector w ' =  [0.0 0.0193 0.0773]. Note that 
heritability estimates have now been placed on the 
boundary values of  zero (0.0) and one (1.0). Moreover, 
if one assumes that the sire and dam variance are both 
estimating one-fourth of  the additive genetic variance, 
an equality constraint of  62 = 6~ may be employed. 

In addition, inequality constrained estimation can 
be used to compute estimates o f  the environmental and 
genetic correlations between two traits within the 
theoretical range [ - I ,  1]. In the example presented in 
Van Vleck (1973, p. 51) we first use inequality con- 
straints to estimate the sire and error variances of  traits 
A and B. This is to insure that heritability estimates o f  
traits A and B are within the range [0, 1]. Having 
obtained estimates of  a2~, a2., aE2A and a2. (the sire and 

error variances for traits A and B) these values are used 
in establishing the linear inequality constraints for the 
estimators of  the genetic and environmental covari- 
ances so the correlations are in [ - 1 ,  1]. Thus the form 
of F a > h for the estimation of  the sire and environ- 
mental covariances of  traits A and B is 

1 O'SASB > -- 6SA O'SB 

3 L aEA E, = -- C 
3 - - C  

where C = {(a2A- 3 a ~ ) ( a 2 , -  3 ~2,)} '/:. 

Extending this algorithm to multiple trait problems 
of  more than two traits may impose significant com- 
puting problems. For  example, in a problem with four 
traits there are six genetic correlations to be estimated. 
Constraining the estimates o f  variance and covariance 
components will greatly increase the order of  F and h. 
The effect of  these simultaneous constraints, along with 
constraints to satisfy parameter restrictions on all the 
intermediate partial correlations, may adversely effect 
the stability of  the solutions. 1 Certainly, such multiple 
trait problems may impose computing difficulties that 
make this, or perhaps any other computing algorithm, 
impractical. 

An alternative formulation of inequality constraints, in 
multiple trait models, could be used to force the variance- 
covariance metrices to be positive definite (suggested by Van 
Vleck, personal communication). This is equivalent to con- 
straints on the variance and covariance components such that 
the latent roots of the genetic and environmental covariance 
matrices are all positive. Constraints on the latent roots are 
equivalent to those above provided constraints include coeffi- 
cients used in the estimation of genetic parameters. 

Smal l  sample properties o f  inequal i ty  constrained 
est imation of  variance c o m p o n e n t s  

A Monte Carlo study is presented to examine the 
sampling properties of  the inequality constrained (IC) 
estimators of  variance components. A small scale 
numerical study was used to assess the accuracy of  IC 
estimators relative to other methods, because the 
sampling properties cannot be explicitly derived. The 
question of primary importance is whether the increase 
in bias of  IC estimation is offset by a smaller variance 
of  prediction errors. That is, is it advantageous to 
accept some bias in our estimators while decreasing the 
variance of  prediction errors? 

Sample data sets were generated from two small 
designs, described in Table 2, after Quaas and Bolgiano 

1 The author wishes to acknowledge the reviewer responsible 
for offering this comment 
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Table 2. Description of data sets for small sample numerical 
study 

Design I Design II 

No. of observations 100 100 
No. of herds 5 5 
No. of sires 10 10 
Percent filled cells 40.0 54.0 
No. observations/filled cell 5.0 3.7 

(1977). An appropriate model is a two-way crossed 
classification mixed model without interaction. Obser- 
vations generated as multivariate normal (Internation- 
al Mathematical and Statistical Libraries 1979) were 
classified by herd (a fixed effect) and sire (a random 
effect) and thus, after model (1) k = 2, b is vector of  
fixed herd effects, ul, is a nonobservable vector of  
random sire effects and u 2 = e, a vector of  residuals. 
Heritability is estimated as 4 a21(a 2 + a~) and the in- 
equality constraints, F a > h, are written as 

0 - . 
- 3  La ] 

Observations were generated at seven (7) parameter 
values of  a 2 and a~ corresponding to heritabilities of  
0.05, 0.10, 0.25, 0.50, 0.75, 0.90, and 0.95. 

The method of  variance component estimation used 
in this sampling experiment was MIVQUE (Rao 1971), 
although any method which can be formulated after 
(4) may have been used. The matrix of  coefficients and 
quadratic forms used for MIVQUE is 

t r ( Z ' P Z ) 2  t r ( Z ' P Z Z ) ] [ 3 " ~ ] = [  y ' P Z Z ' P y ]  (10) 
tr(Z,  p2z)  tr(p2) [622] [ y, p 2 y  

where for 

V =  I+~TZZ ' ,  

P =  V -1 - V -l X(X'  V -l X)-  X' V -I and 

7 = a~/a22 = h2/( 4 - h2) �9 

The symbol ..... is used to denote a prior value of  7 
one which does not necessarily agree with the value of  
7. The notation MIVQUE (9") is used to distinguish 
between MIVQUE estimators computed at different 
prior values of  y. Computations were performed at 
seven (7) possible priors, corresponding to heritabilities 
of  0.05, 0.10, 0.25, 0.50, 0.75, 0.90, and 0.95. 

The sampling experiment proceed with the gener- 
ation of  500 data sets for each of  the 49 possible 
combinations of  true values (of a~ and a 2) and priors. 
This permits an examination as to the optimal choice 
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of  a prior when using IC estimators. In addition, the 
efficiency of  estimation was examined to determine if 
the increased accuracy of  IC estimators was offset by 
the increase in bias. 

The percentage of  estimates of  heritability that 
were outside the range [0, 1] was a function of  the true 
value of  heritability and not the prior. The percentage 
of  negative estimates of  heritability range from approx- 
imately 45% of the 500 data sets for a true heritability 
of  0.05 to 2% at a true heritability of  0.95 (independent 
of the choice of  prior). Similarly, the percentage of  
heritability estimates greater than one (1.0) ranged 
from less than 1% (2 about of  500 data sets) at a true 
heritability of  0.05 to approximately 41% of  the data 
sets for a true value of  0.95. 

Results are presented for Design II only, al though 
similar findings are established under Design I. 
Figure 1 presents the estimated bias of  aT, stan- 
dardized by dividing the difference between estimated 
and true value by the true standard deviation of  sire 
effects. As expected the bias is minimized for inter- 
mediate true values of  a~ (i.e., values corresponding to 
heritabilities of  0.25 to 0.75). As shown earlier, if F a is 
much greater than h, IC estimation is equivalent to 
ordinary least squares, which yields unbiased estimates. 
On the other hand, at the boundaries, the IC algorithm 
behaves so as to overestimate a~ at low heritability and 
underestimate a~ at high heritability to insure solutions 
within theoretical limits. Precisely the opposite is true 
for inequality constrained estimation of  a2. Figure 2 
presents the estimated bias (standardized by dividing 
by the error standard deviation) of  constrained estimates 
of a2. As is obvious from the figure, underestimates of  
a22 occur at low heritability while overestimation is a 
problem at high values of  heritability. However, with a 

2 ~  

~ " . . . .  . 5 0  D 

1 - " ~ ' - . ,  o .90 . . . . . . .  % - %  
~ *"...o 

- !  "~176 ......................... 

- 2  I I ' I I I 
O 0.2 0.4 0.6 0.8 1.0 

True Heritabi l i ty 
Fig. l. Estimated bias of inequality constrained estima5ion of 
a 2 in Design II for three prior heritabilities 

.~ o- 
m 
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Fig. 2. Estimated bias of inequality constrained estimation of 
a2 2 in Design II for three prior heritabilities 
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Fig. 4. Estimated efficiency of inequality constrained estima- 
tion of a 2 in Design II for three prior heritabilities 
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Fig. 3. Estimated bias of inequality constrained estimation of 
heritability in Design II for three prior heritabilities 

prior corresponding to as high a heritability as 0.90, 
the bias remains close to zero over the range of true 
parameter values. 

Bias in the estimation of heritability is presented in 
Fig. 3. As in the inequality constrained estimation of 
a] 2, heritability is overestimated for low true parameter 
values and underestimated for true values above 0.5. 
Interestingly, the prior assumption for heritability has 
little influence on the magnitude of the bias as all plots 
follow a nearly identical path. Also included in Fig. 3 is 
a plot of the expected bias for standard MIVQUE, 
which although unbiased for the individual variance 
components, the expected value of the ratio is not the 
value of the true parameter (Mood et al. 1974; p. 181). 

As the figure indicates, standard MIVQUE is biased 
downwards across the entire range of true parameter  
values. 

Figure 4 presents the efficiency of IC estimation of 
a~ as compared to MIVQUE estimators computed with 
priors that are identical to true value. Efficiency of 
estimation is computed as the ratio of the theoretical 
mean squared error (MSE) of MIVQUE (7) to the 
estimated MSE of ICMIVQUE at various prior values�9 
Recall that the MSE of MIVQUE (~) may be derived 
analytically given 7, X and Z of model (1) whereas the 
MSE of ICMIVQUE must be estimated from the 
sampling experiment because there is no explicit ex- 
pression for the variance of inequality constrained 
estimators - owing to the iterative nature of the 
algorithm. Note also that the MSE is the sum of the 
prediction error variance and the squared bias so that 
the estimated MSE of ICMIVQUE contains the bias 
and thus allows an examination of the increased 
accuracy of constrained estimation relative to the 
increase in the bias of the estimators. The plots present- 
ed in Fig. 4 (which are similar to plots available for 
Design I) illustrate the ICMIVQUE estimators of a~ 
are, over repeated sampling, more efficient than stan- 
dard MIVQUE. Conversely, Fig. 5 demonstrates a 
dramatic decline in the efficiency of estimation of a~ 
under inequality constraints, particularly in the range 
of true heritabilities over 0.75�9 This may have been 
expected since the only constraint on ez is that the 
estimate be positive, which is satisfied for unbiased 
estimators (LaMotte 1973). Thus, the inequality con- 
straints imposed on al z, which simultaneously alter the 
estimation of (r~, can alter the efficiency of estimation 
of ~.  
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~aJ 

1 . 5  m 

1 . 0 -  

0 .5 - -  
.10 - -  
.50 
.90 ...... 

' I ' i ' 
0.2 0.4 

I ' I ' I 
0.6 0.8 1.0 

True Heritability 

Fig .  5. Estimated efficiency of inequality constrained estima- 
tion ofa~ in Design II for three prior heritabilities 
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Fig. 6. Estimated efficiency of inequality constrained estima- 
tion of heritability in Desgn II for three prior heritabilities 

.~  1.75- 

~ 1.5o. 

Finally, Fig. 6 presents the increase in efficiency of  
inequali ty constrained est imat ion of  her i tabi l i ty  over  
that of  unbiased estimation. The increase is par t icular-  
ly evident for high values o f  heri tabil i ty.  In addit ion,  it 
is obvious from the several plots in Fig. 6 to deduce the 
choice of  pr ior  most appropr ia te  for a given true value 
of  heritabili ty.  Not  surprisingly,  the assumed prior  
should agree as closely as possible to the true herit-  
ability. 

C o n c l u s i o n  

The sampling experiment,  presented in the previous 
section, illustrates the increase in the efficiency of  

estimation of heri tabil i ty (in terms of  minimizing the 
ratio of  MSE's of  MIVQUE to ICMIVQUE) when 
inequality constraints are used to insure est imates 
within theoretical limits. The performance of  other  
variance estimation methods (e.g., Henderson methods) 
can be examined in a similar  fashion. The poor  
efficiency of  estimation for the residual var iance 
suggests the following algori thm for inequal i ty  con- 
strained estimation of  heri tabil i ty:  

1) Estimate the residual variance with any "local"  
unbiased method (e.g., the within smallest subclass 
mean square);  

2) Using equality constraints, force the solution for the 
residual variance to this value, allowing only azl to vary 
so as to insure an estimate of  her i tabi l i ty  within the 
interval [0, 1]. 

This algorithm may increase the efficiency of  est ima- 
tion above that shown in Fig. 6. 
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